The information about the state of a qubit gained by a weakly coupled detector
نویسندگان
چکیده
We analyze the information that one can learn about the state of a quantum two-level system, i.e. a qubit, when probed weakly by a nearby detector. In particular, we focus on the case when the qubit Hamiltonian and the qubit’s operator being probed by the detector do not commute. Because the qubit’s state keeps evolving while being probed and because the measurement data is mixed with detector-related background noise, one might expect the detector to fail in this case. We show, however, that under suitable conditions and by proper analysis of the measurement data useful information about the state of the qubit can be extracted. It turns out that the measurement basis is stochastically determined every time the experiment is repeated. We analyze in detail the probability distributions that govern the choice of measurement bases. We also analyze the information acquisition rate and show that it is largely unaffected by the apparent conflict between the measurement and intrinsic qubit dynamics. We discuss the relation between our analysis and the stochastic master equation that describes the evolution of the qubit’s state under the influence of measurement and decoherence. In particular, we write down a stochastic equation that encompasses the usual stochastic master equation for the evolution of the qubit’s density matrix and additionally contains the measurement information that can be extracted from the observed signal. 4 Author to whom any correspondence should be addressed. New Journal of Physics 11 (2009) 083017 1367-2630/09/083017+35$30.00 © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
منابع مشابه
Information about the state of a charge qubit gained by a weakly coupled quantum point contact
We analyze the information that one can learn about the state of a quantum two-level system, i.e. a qubit, when probed weakly by a nearby detector. We consider the general case where the qubit Hamiltonian and the qubit’s operator probed by the detector do not commute. Because the qubit’s state keeps evolving while being probed and the measurement data is mixed with a detector-related background...
متن کاملDecoherence effects on quantum Fisher information of multi-qubit W states
Quantum fisher information of a parameter characterizing the sensitivity of a state with respect to parameter changes. In this paper, we study the quantum fisher information of the W state for four, five, six and seven particles in decoherence channels, such as amplitude damping, phase damping and depolarizing channel. Using Krauss operators for decoherence channels components, we investigate t...
متن کاملSuper operator Technique in Investigation of the Dynamics of a Two Non-Interacting Qubit System Coupled to a Thermal Reservoir
In this paper, we clarify the applicability of the super operator technique for describing the dissipative quantum dynamics of a system consists of two qubits coupled with a thermal bath at finite temperature. By using super operator technique, we solve the master equation and find the matrix elements of the density operator. Considering the qubits to be initially prepared in a general mixed st...
متن کاملBistability in the Electric Current through a Quantum-Dot Capacitively Coupled to a Charge-Qubit
We investigate the electronic transport through a single-level quantum-dot which is capacitively coupled to a charge-qubit. By employing the method of nonequilibrium Green's functions, we calculate the electric current through quantum dot at finite bias voltages. The Green's functions and self-energies of the system are calculated perturbatively and self-consistently to the second order of inte...
متن کاملCoupled fixed point results for weakly related mappings in partially ordered metric spaces
In the present paper, we show the existence of a coupled fixed point for a non-decreasing mapping in partially ordered complete metric space using a partial order induced by an appropriate function $phi$. We also define the concept of weakly related mappings on an ordered space. Moreover common coupled fixed points for two and three weakly related mappings are also proved in the same space.
متن کامل